
Subthreshold-Seeking Behavior and
Robust Local Search

Darrell Whitley1, Keith Bush1, and Jonathan Rowe2

1 Computer Science, Colorado State University, Fort Collins, CO 80523
2 Computer Science, University of Birmingham, Birmingham B15 2TT, UK

Abstract. Subthreshold-seeking behavior occurs when the majority of
the points that an algorithm samples have an evaluation less than some
target threshold. We characterize sets of functions where subthreshold-
seeking behavior is possible. Analysis shows that subthreshold-seeking
behavior, when possible, can be increased when higher bit precision is
used with a bit climber search algorithm and a Gray code representation.
However, higher precision also can reduce exploration. A simple modi-
fication to a bit-climber can improve its subthreshold-seeking behavior.
Experiments show that this modification results in both improved search
efficiency and effectiveness on common benchmark problems.

1 Introduction and Background

The goal of an optimization algorithm is to find optimal points of a search space.
However, it may sometimes be useful to try to locate points that are sufficiently
good (e.g., within some threshold). We might also like to have some assurance
that an algorithm is relatively effective on a wide range of problems.

We will say that a search algorithm is robust if it is able to beat random search
across a wide variety of optimization problems. Christensen and Oppacher [1]
have shown that the No Free Lunch theorem does not hold over broad classes of
problems that can be described using polynomials of a single variable of bounded
complexity. The algorithm that Christensen and Oppacher propose is robust in
as much as it is able to out-perform random enumeration on a general class
of problems. But the algorithm they propose is not very effective as a search
algorithm. Can we do better than this? And what theoretical and practical
implications does this question imply?

In this paper we generalize the approach of Christensen and Oppacher. We
will say that an algorithm has subthreshold-seeking behavior if the algorithm es-
tablishes an aspiration threshold, and then spends more than half of its time sam-
pling points that are below threshold. An algorithm with subthreshold-seeking
behavior can beat random enumeration and side-step the No Free Lunch result
by focusing on a special, but nevertheless general class of functions.

We next ask to what degree does a local search bit climber display robust,
subthreshold-seeking behavior. We show that there are a number of conditions
where a local search bit climber will display subthreshold-seeking behavior.
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We also present several theorems that indicate how and when a local search
bit climber can display subthreshold-seeking behavior. These results prove that
subthreshold-seeking behavior increases when higher bit precision encodings are
used. In addition to the theoretical analysis presented, we empirically show that
a local search bit climber with sufficient precision will spend most of its time
“subthreshold” on a number of common benchmark problems. We then make a
very simple modification to a bit climber with restarts algorithm to allow it to
spend more time “subthreshold.” The modified algorithm is both more efficient
and effective, finding better solutions faster than local search with restarts.

1.1 The SubMedian-Seeker

Suppose we have an objective function f : [a, b] → R, where [a, b] is a closed
interval. We discretize this interval by taking N uniformly sampled points, which
we label with the set X = 0, 1, ..., N − 1. By abuse of notation, we will consider
f : X → R, such that f(x) takes on the evaluation of the point labeled x. Assume
f is bijective as a function of X and that the median value of f is known and
denoted by med(f).

Christensen and Oppacher define a minimization algorithm called
SubMedian-Seeker. The algorithm presented here is a similar to SubMedian-
Seeker but is simpler and easier to understand.1

EZ-SubMedian-Seeker

1. If less than |X|
2 points have been sampled, then choose a random sample

point, x ∈ X . Otherwise terminate.
2. While f(x) < med(f) pick next sample x = x + 1. Else goto step 1.

Without lose of generality, we assume that x and its successor x + 1 are
integers. The algorithm exploits the fact that for certain classes of functions,
points that are adjacent to submedian points are more often than not also sub-
median points. The actual performance depends on M(f), which measures the
number of submedian values of f that have successors with supermedian values.
Let Mcrit be a critical value relative to M(f) such that when M(f) < Mcrit

SubMedian-Seeker (or EZ-SubMedian-Seeker) is better than random search.
Christensen and Oppacher [1] then prove:

If f is a uniformly sampled polynomial of degree at most k and if Mcrit >
k/2 then SubMedian-Seeker beats random search.

1 The original submedian seeker is able to detect and exploit functions where every
other point is below submedian and thus a local optimum. EZ-SubMedian-Seeker will
not detect this regularity. However, we generally are not concerned with functions
that are maximally multimodal. Also, the Christensen and Oppacher proof still holds
for EZ-SubMedian-Seeker.
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This result holds because there are at most k solutions to f(x) = y where y
can be any particular co-domain value. If y is a threshold, then there are at most
k crossings of this threshold over the sampled interval. Half, or k/2, of these are
crossings from subthreshold to superthreshold values. Thus, M(f) <= k/2 for
polynomials of degree k. In the case where the median is the threshold, step
1 has equal probability of sampling either a submedian or supermedian value.
Therefore, as long as step 2 generates a surplus of submedian points before ter-
minating at a supermedian point, the algorithm beats random search. We can
think of step 1 as an exploration phase with balanced cost and step 2 as an
exploitation phase that accumulates submedian points. If M(f) ≤ k/2 < Mcrit,
then SubMedian-Seeker (and EZ-SubMedian-Seeker) will perform better than
random enumeration because more time is spent below threshold during step
2. Christensen and Oppacher offer extensions of the proof for certain multi-
variate polynomials as well. In the next section we characterize a more general
Subthreshold-Seeker algorithm.

2 Subthreshold-Seeker

We still assume f is 1-dimensional and bijective and N = |X |. Set a threshold of
α between 0 and 1/2. We are interested in spending time in the αN best points
of the search space (ordered by f). We refer to these as subthreshold points.
Addition is modulo N and the search space is assumed to wrap around so that
points 0 and N − 1 are neighbors.

Let Θ(f) denote a threshold co-domain value such that exactly αN points of
X have evaluations, f(x), less than Θ(f). Subthreshold-Seeker works as follows:

1. Pick a random element x ∈ X that has not been seen before.
2. If f(x) < Θ(f) let x = x + 1 and y = x − 1; otherwise goto 1.
3. While f(x) < Θ(f) pick next sample x = x + 1.
4. While f(y) < Θ(f) pick next sample y = y − 1.
5. If Stopping-Condition not true, goto 1.

Once a subthreshold region has been found, this algorithm searches left and
right for subthreshold neighbors. This minor variation on Submedian-Seeker
means that a well defined region has been fully exploited. This is critical to
our quantification of this process. We will address the “Stopping-Condition”
later.

For theoretical purposes, we assume that the function Θ(f) is provided. In
practice, we can select Θ(f) based on an empirical sample.

2.1 Functions with Uniform Quasi-basins

We will define a quasi-basin as a set of contiguous points that are below a
threshold value. Note this is different from the usual definition of a basin: a
quasi-basin may contain multiple local optima. Consider a function f where
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all subthreshold points are contained in B equally sized quasi-basins of size
αN/B. We then ask how many superthreshold points are visited before all the
subthreshold points are found. Suppose k quasi-basins already have been found
and explored. Then there remains B − k quasi-basins to find, each containing
αN/B points. There are at most N − kαN/B superthreshold points unvisited.
So the probability of hitting a new quasi-basin is (slightly better than)

(B − k)(αN/B)
N − kαN/B

=
(B − k)α
B − kα

This calculation is approximate because it assumes that superthreshold points
are sampled with replacement. As long as the probability of randomly sampling
the same superthreshold point twice is extremely small, the approximation will
be accurate. For large search spaces this approximation should be good.

If the probability of “hitting” a quasi-basin is p, the expected number of trials
until a “hit” occurs is 1/p. This implies that the expected number of misses before
a successful hit occurs is 1/p−1. So the expected number of superthreshold points
that are sampled before finding a new quasi-basin is approximately (slightly less
than)

B − kα

(B − k)α
− 1 =

B(1 − α)
(B − k)α

This means that the expected number of superthreshold points seen before the
algorithm has found all quasi-basins is bounded above by

B−1∑

k=1

B(1 − α)
(B − k)α

=
B(1 − α)

α

B−1∑

k=1

1
(B − k)

=
B(1 − α)

α
H(B − 1) (1)

where H is the harmonic function. Note H(B−1) is approximated by (log(B−1)).
Throughout this paper log denotes log2.

2.2 Functions with Unevenly Sized Quasi-basins

Now suppose that the quasi-basins are not evenly sized. If f is a uniformly
sampled polynomial of degree at most k it can have at most k/2 quasi-basins
and after fixing X , there must be at least 1 subthreshold quasi-basin of size
αN/(k/2) or larger. One way Subthreshold-Seeker can be used is to search until
one quasi-basin of size at least αN/(k/2) is found. The waiting time to find such
a basin is less than N

αN/(k/2) = k/2
α . It can be shown that more subthreshold

points will be sampled than superthreshold points as long as

α
k/2
α

+ αN/(k/2) > (1 − α)
k/2
α

which reduces to 2α +
α2N

(k/2)2
> 1

and this does not even count smaller subthreshold quasi-basins that are exploited
before finding one of size αN/(k/2).
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What if we want to find all quasi-basins that contain at least M points, and
we suppose there are B such quasi-basins. (If we happen to find some smaller
ones, that is a bonus). Suppose we have found k such quasi-basins. The proba-
bility of finding another is

>
(B − k)M

(B − k)M + N − BM
=

(B − k)M
N − kM

So the expected number of superthreshold points visited before this happens is

<
N − kM

(b − k)M
− 1 =

N − BM

BM − kM

The total number of superthreshold points visited is thus

<
B−1∑

k=1

N − BM

BM − kM
=

(
N − BM

M

)
H(B − 1)

Theorem 1: Let α define a threshold presenting some fraction of the search
space. Suppose there are B quasi-basins each containing at least M points. If

M >
√

NH(B−1)
B then Subthreshold Seeker can find all B basins and will explore

more subthreshold points that superthreshold points. For all α < 1/2 Subthreshold
Seeker beats random search.

Proof:

If M2 >
NH(B − 1)

B
then BM >

NH(B − 1)
M

>

(
N

M
− B

)
H(B − 1).

BM is the total number of subthreshold points visited. The expected number
of superthreshold points visited is given by

(
N
M − B

)
H(B − 1). Therefore, for

sufficiently large N , when M >
√

NH(B−1)
B more subthreshold points are visited

than superthreshold points. �

Given information (or strong assumptions) about M and B we can restrict
α and spend more time exploring the best regions of the search space compared
to SubMedian-Seeker.

Table 1 calculates M =
√

NH(B−1)
B rounded up to the nearest integer. It also

computes α. This value is exact when α > BM/N ; otherwise it underestimates
the percentage of the space that is below threshold. Clearly, as the number of
quasi-basins goes up, fewer points occur in each quasi-basin. As the search space
size increases, there are more points in each quasi-basin, but we can also lower
α so that the number of subthreshold points becomes a smaller percent of the
search space. The smaller the subthreshold value, the more Subthreshold-Seeker
will beat random-search, and the more effective Subthreshold-Seeker becomes as
a general search algorithm.

This perspective also provides another insight. Note that we can interpret
the change in the size of the search space as a change in precision: the num-
ber of quasi-basins generally does not change (for polynomials the number of
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Table 1. This table computes how large quasi-basins must be in order for more sub-
threshold points to be sampled than superthreshold points when there are different
numbers of quasi-basins (B) and for different size search spaces (N). The threshold α
is also given, assuming exactly B quasi-basins all of size M.

B = Number of Quasi-Basins
Size = N 25 27 210 211 212 213 214 215

106 396 234 99 74 55 40 30 22
107 1250 740 313 232 172 126 93 68
108 3953 2339 988 733 542 399 293 214
109 12500 7395 3123 2317 1711 1260 924 676
Sizes of quasi-basins, M, as a function of B and N.

Size=N 25 27 210 211 212 213 214 215

106 0.013 0.030 0.10 0.150 0.222 0.326 0.479 0.701
107 0.004 0.009 0.032 0.047 0.070 0.103 0.151 0.222
108 0.001 0.003 0.010 0.015 0.022 0.033 0.048 0.070
109 0.0004 0.001 0.003 0.005 0.007 0.010 0.015 0.022

Corresponding values of α

quasi-basins is bounded by k/2), but we sample more densely, thus effectively
increasing the number of points in the search space. Higher precision allows the
search to spend more time subthreshold (or to use a lower threshold). But if
the precision is too high, search provides little in the way of exploration when
making subthreshold moves.

The subthreshold algorithm, like the original SubMedian-Seeker, isn’t really
an efficient search algorithm. The goal of search usually is not to examine as many
sub-threshold points as possible. However, understanding how such algorithms
beat random enumeration can provide practical insights.

Two observations come out of this work. One observation is that precision
matters. For any threshold, the relative proportion of points that are subthresh-
old does not change with a change in precision. However, the number of points
that fall within a quasi-basin increases with precision. Assuming a change in
precision does not change the boundaries of the quasi-basins, algorithms with
subthreshold-seeking behavior will spend more time subthreshold at higher preci-
sion. The second observation is that sampling can potentially be used to establish
threshold values that can be used to focus the search. In the remainder of the
paper, we explore both of these ideas in conjunction with simple, but practical,
local search methods.

3 Precision and Subthreshold Local Search

We first look at how precision affects the number of neighbors that exist within
a certain distance from some reference point under Gray code.
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Lemma 1: Given a 1-D function of size N = 2L and a reference point R in the
function, under a Gray encoding at most �log(Q)� bits encode for points that are
more than a distance of D points away from R, where D = 1

QN .

Proof: In the 1-dimensional case when the highest order bit is changed under
Gray encoding this accesses the only neighbor that is in the opposite half of the
search space. (This does not imply that the neighbor is necessarily far away.)

Bits are eliminated to remove the remaining half of the search space which
does not contain the reference point. We continue to reduce the search space
around the reference point by removing bits until �log(Q)� bits have been elim-
inated. The remaining search space is then at most D = N/Q points since

log(N/Q) + log(Q) = log(N) and N(1/2)�log(Q)� ≤ N/Q �.

As precision increases, the quantity N/Q becomes larger and thus log(N/Q)
increases. However Q and log(Q) remain constant. Thus, at higher precision,
the number of neighbors within a distance of N/Q points increases.

Now assume we are trying to isolate a quasi-basin of size N/Q points.

Theorem 2: Given a quasi-basin that spans 1/Q of a 1-D function of size N =
2L and and a reference point R inside the quasi-basin, the expected number of
neighbors of R that fall inside the quasi-basin under a reflected Gray code is
greater than �(log(N/Q))� − 1.

Sketch of Key Ideas:
The full proof for this theorem is long and is available in an expanded version

of the current paper (see www.cs.colostate.edu/ genitor/Pubs.html). The proof
averages over all possible points in the quasi-basin and all possible placements
of reflections points; this accounts for all possible neighborhood configurations
that can exist within a quasi-basin.

We define the lower triangle matrix Mx using a recursive definition such that
M1 = [1]. Matrix Mx can be decomposed into a 2x−1 by 2x−1 square matrix
whose elements are all the integer x, plus 2 identical lower triangle matrices
Mx−1. The square matrix occupies the first 2x−1 columns of the last 2x−1 rows
of Mx. The first 2x−1 − 1 rows of Mx correspond to the recursively defined
matrix Mx−1. Finally, another copy of Mx−1 is appended to the last 2x−1 − 1
rows of the square matrix.

The following illustration represents a quasi-basin over 7 points (left). Each
row represents the number of neighbors for each point, such that those neighbors
falls inside the quasi-basin under a Gray code, where the main reflection point
of the Gray code is at the location marked by the | symbol. The lower triangle
matrix on the right is the matrix M3 for a search space of size 23 − 1 = 7.

2 3 2 3 3 3 2 |
2 2 3 3 2 3 | 1 1
1 3 2 3 3 | 2 2 2 2
2 3 3 3 | 2 3 2 2 2 1
2 3 2 | 3 3 3 2 3 3 3 3
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2 2 | 3 3 2 3 1 3 3 3 3 1
1 | 3 2 3 3 2 2 3 3 3 3 2 2
| 2 3 3 3 2 3 2 3 3 3 3 2 2 1

Let F (x) compute the average value over the elements of matrix Mx. By
induction one can show:

x − 1 < F (x) =
2xx

2x − 1
− 1 < x

The full proof shows via two constructive subproofs that as the size of the quasi-
basin grows from 2x − 1 points to 2x+1 − 2 points the expected number of
neighbors is always greater than F (x) > x − 1 where x = �(log(N/Q))�.
Corollary: Given a quasi-basin that spans 1/Q of the search space and a ref-
erence point R that falls in the quasi-basin, the majority of the neighbors of R
under a reflected Gray code representation of a search space of size N will be
subthreshold in expectation when �(log(N/Q))� − 1 > log(Q) + 1.

A local search algorithm currently at a subthreshold point can only move
to an equal or better point which must also be subthreshold. And as pre-
cision increases, the number of subthreshold neighbors also increases, since
�(log(N/Q))� − 1 increases while Q remains constant. This assumes the qua-
sibasin is not divided by increasing the precision. The above analysis would
need to hold for each dimension of a multidimensional search space, but these
results suggest there are very general conditions where a bit-climbing algorithm
using a Gray code representation can display subthreshold-seeking behavior.
This also assumes the search algorithm can absorb the start-up costs of locating
a subthreshold starting point.

4 Algorithms

Under favorable conditions a bit-climbing algorithm using a Gray code represen-
tation can display subthreshold seeking behavior, but do they display subthresh-
old seeking behavior on common benchmarks? In this section, we compared two
versions of bit-climbers. Both algorithms use steepest ascent Local Search (LS)
which evaluates all neighbors before moving. One algorithm, denoted LS-Rand,
uses random restarts. Another algorithm, denoted LS-SubT, uses sampling to
start search the bit climbing process at a subthreshold point.

LS-SubT first samples 1000 random points, and then climbs from the 100 best
of these points. In this way, LS-SubT estimates a threshold value and attempts
to stay in the best 10 percent of the search space.

LS-Rand does 100+y random restarts. LS-Rand was given y additional ran-
dom starts to compensate for the 1000 sample evaluations used by the LS-SubT
algorithm. To calculate y we looked at the size of the bit encoding and the
average number of moves needed to reach a local optimum.
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4.1 Experiments and Results

Both LS-Rand and LS-SubT were tested on benchmarks taken from Whitley et
al. [2] who also provide function definitions. The test function included Rastrigin
(F6) and Schwefel (F7) which are both separable. The other functions include
Rosenbrock (De Jong’s F2), F101 and Rana functions as well as a spike function
similar to one defined by Ackley [3] where:

F (x, y) = −20e−0.2
√

(x2+y2)/2 −e(cos2πx+cos2πy)/2 +22.7, xi ∈ [−32.768, 32.768]

All problems were posed as 2-dimensional search problems. Experiments were
performed at 10 and 20 bits of resolution per parameter. A descent corresponds
to one iteration of local search, which will locate one local optimum. A trial
corresponds to one run of the respective algorithm, composed of 100 descents
for LS-SubT and 100 + y descents for LS-Rand. An experiment corresponds to
30 trials. Each experiment is a configuration of search algorithm, test function
and parameter resolution. Statistics are computed over each experiment. All
chromosomes were encoded using standard Gray code.

Table 2. Results of steepest ascent search at 10 bit resolution per parameter in 2-
dimensional space. LS-Rand (here Rand) used 104 restarts. LS-SubT (here SubT)
restarted from best 100 of 1000 random points. 0.0* denotes a value less than 1×10−13.
Evals were rounded to the nearest integer. The † denotes a statistically significant
difference at the 0.05 level using a t-Test.

Function ALG Mean Std Best Std Sub Evals Std
ackley Rand 2.72 0.71 0.18 0.0* 62.4 19371 663

SubT 0.79† 0.32 0.18 0.0* 79.7 16214† 163
f101 Rand -29.2 0.0* -29.2 0.0* 71.7 22917 288

SubT -29.2 0.0* -29.2 0.0* 84.0 18540† 456
f2 Rand 0.10 0.01 0.001 0.002 61.4 23504 3052

SubT 0.10 0.01 0.0004 0.0* 72.0 666† 1398
griewangk Rand 0.86 0.16 0.010 0.011 59.5 13412 370

SubT 0.75† 0.11 0.005 0.009 80.1 9692† 125
rana Rand -37.8 0.84 -49.65 0.59 49.5 22575 2296

SubT -39.7† 0.68 -49.49 0.52 57.6 19453† 1288
rastrigin Rand 4.05 0.20 0.100 0.30 63.5 18770 495

SubT 4.00 0.28 0.0 — 75.4 14442† 343
schwefel Rand -615.8 11.8 -837.9 0.0* 53.5 17796 318

SubT -648.0† 10.1 -837.9 0.0* 68.0 14580† 414

The results of 10 and 20 bit resolution experiments are given in Tables 2 and 3
respectively. Mean denotes mean solution over all descents in all trials. (This is
also the mean over all local optima found.) Best denotes the best solution per
trial (i.e., the best optimum found over 100 or 100 + y descents). Sub denotes
the percentage of all evaluations that were subthreshold. Evals denotes the



Subthreshold-Seeking Behavior and Robust Local Search 291

Table 3. Results of steepest ascent search at 20 bit resolution per parameter in 2-
dimensional space. LS-Rand (here Rand) used 101 restarts. LS-SubT (here SubT)
restarted from best 100 of 1000 random points. 0.0* denotes a value less than 1×10−7.
Evals were rounded to the nearest integer. The † denotes a statistically significant
difference at the 0.05 level using a t-Test.

Function ALG Mean Std Best Std Sub Evals Std
ackley Rand 2.84 0.66 0.0001 0.0* 75.1 77835 1662

SubT 0.65† 0.28 0.0001 0.0* 89.9 73212† 1194
f101 Rand -29.2 0.0* -29.22 0.0* 84.7 84740 1084

SubT -29.2 0.0* -29.22 0.0* 92.3 77244† 1082
f2 Rand 0.0* 0.0* 0.0* 0.0* 86.0 2×107 4×105

SubT 0.0* 0.0* 0.0* 0.0* 85.9 2×107 3×105

griewangk Rand 0.75 0.20 0.0045 0.003 80.3 66609 1109
SubT 0.60† 0.09 0.0049 0.003 90.0 59935† 1103

rana Rand -40.63 0.93 -49.76 0.47 74.2 3×106 8×105

SubT -42.54† 0.66 -49.83 0.51 85.0 3×106 8×105

rastrigin Rand 4.10 0.22 0.033 0.18 81.5 76335 1734
SubT 3.94† 0.21 0 — 88.5 68019† 1018

schwefel Rand -622.7 13.8 -837.97 0.0* 73.5 75285 969
SubT -660.4† 13.4 -837.97 0.0* 84.8 69372† 1340

mean number of test function evaluations per trial averaged over all trials in
the experiment. Stddev denotes the standard deviation of the value given in the
adjacent left-hand column.

In general, the results indicate that LS-SubT sometimes produces statisti-
cally significant better solution quality compared to LS-Rand. LS-SubT never
produces statistically significant worse performance than LS-Rand.

The data suggests two observations about subthreshold-seeking behavior.
First, the sampling used by LS-SubT results in a higher proportion of subthresh-
old points compared to LS-Rand as shown in Tables 2 and 3. Second, a larger
proportion of subthreshold neighbors are sampled for searches using higher pre-
cision. At 20 bits of precision per parameter, at least 70 percent of the points
sampled by LS-Rand were subthreshold, and at least 80 percent of the points
samples by LS-SubT were subthreshold. At 10 bits of precision per parameter,
LS-SubT sampled subthreshold points 57 to 84 percent of the time.

At 10 bits of precision, LS-SubT also did fewer evaluations, meaning that it
reached local optima faster than LS-Rand. This makes sense in as much as it
starts at points with better evaluations. Sometimes the difference was dramatic.
Thus, the majority of the time LS-SubT also produced solutions as good or
better than LS-Rand, and it did so with less effort.

At 20 bits of precision, there is less difference between LS-Rand and LS-SubT.
This follows from our theory, since higher precision implies that both algorithms
spend more time subthreshold after a subthreshold point is found, but this does
not necessarily result in faster search.
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Fig. 1. The graph shows the number of subthreshold points for LS-SubT (the solid
line) and LS-Rand (the dashed line) as a function of precision. The functions are
A=Griewangk, B=F2, and C=Rana.

To further explore the impact of bit precision, we performed local search
using LS-Rand and LS-SubT at 5, 10, 15 and 20 bits of resolution. The test
functions used were Griewangk, F2, and Rana functions. Figure 1 shows the
percentage of points that were subthreshold at different resolutions. Across all
three functions, higher resolution produced a greater percentage of subthreshold
sampling. At 5 bit precision less than half of all neighbors are subthreshold for
LS-Rand on all functions. With too few bits, both neighborhood sampling and
random sampling misses quasi-basins. But with too many bits, search is slowed
down because the stepsize can become too small.

There is still much the heuristic search community does not understand about
the impact of using different bit precisions. Unexpected results were encountered
on two functions. The number of evaluations that were executed on the Rana
and F2 functions at 20-bit resolution is huge. Examination of the search space
shows that both of these functions contain “ridges” that run at almost 45 degrees
relative to the (x, y) coordinates. In this context, the steepest ascent bit-climber
is forced to creep along the ridge in very small, incremental steps. Higher preci-
sion exaggerates this problem, which is hardly noticeable at 10 bits of precision.
This is a serious problem we are continuing to research.

5 Conclusions

The No Free Lunch theorem formalizes the idea that all blackbox search algo-
rithms have identical behavior over the set of all possible discrete functions [4]
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[5] [6]. Schumacher et al. [7] review different variants of the No Free Lunch the-
orem; they show that No Free Lunch holds over a finite set if and only that set
is closed under permutation.

The Subthreshold-Seeker algorithm can focus search in the better regions of
the search space. Conditions are outlined that allow a subthreshold seeker to
beat random enumeration on problems of bounded complexity.

A simple sampling mechanism can be used to initialize local search at sub-
threshold points, thereby increasing the potential for subthreshold seeking be-
havior. Of course this strategy also has its own failure modes. Assume that an
“important” basin of attraction, or a quasi-basin, is very large above threshold,
yet small below threshold; then it is possible that random restarts could have an
advantage over subthreshold restarts if success were measured in terms of find-
ing and exploiting this “important” region. Of course the problem with random
restarts is that the search can converge to local optima that are superthreshold.
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